"UNIVERSIDAD EMILIANO ZAPATA"

OBJETIVO DE LA MATERIA el alumno deberá determinar, en una sección arbitraria sometida a esfuerzos, la distribución de las tensiones que se producen, así mismo calcular la respuesta elástica y lineal, medida ésta en términos de movimientos, deformaciones, reacciones y esfuerzos, de estructuras planas sencillas, compuestas de barras y vigas, tanto rectas como curvas, sometidas a acciones arbitrarias para determinar su resistencia.

INGENIERIA EN		INGENIERO ARQUITECTO										
MATERIA		Resistencia de Materiales		LINEA CURRICULAR				ARQUITECTURA				
TETRAMESTRE		CUARTO	CLAVE	2	AIA-	AIA-104 SERIACION AI		AIA-10)5			
HFD	3	HE	:1		5	THS			8		CREDITOS	7

UNIDAD TEMATICA	OBJETIVO DE LA UNIDAD	CONTENIDOS	RECURSOS BIBLIOGRAFICOS
UNIDAD 1. RESISTENCIA DE	 Concientizar al alumno sobre 	Tema 1. Conceptos fundamentales	SAMARTÍN, A. (2005);
MATERIALES	la importancia de la	- Estructura. Acción, esfuerzo,	Resistencia de
	verificación de la resistencia	tensión y	Materiales Colegio de Ingenieros
	y durabilidad de los	 deformación. Hipótesis de la 	de Caminos, Canales y Puertos.
	Materiales para	Resistencia de	SAMARTÍN, A. (2008); Curso
	construcción.	- Materiales. Concepto de	de Elasticidad,
		viga. Rebanada y	Editorial Bellisco
		- fibra. Tipos de vigas.	BENITO, C. (2005) ; Curso de
		Apoyos y coacciones	Plasticidad,
		Tema 2. Relaciones estáticas	Editorial Dossat
		 Ecuaciones de equilibrio. 	Castellanos Niño, Víctor Manuel.
		Relaciones entre	INGENIERÍA CIVIL.
		- acciones y esfuerzos.	Topografía. Levantamientos
		Método de las secciones.	de Control, Explanaciones,
		- Ecuaciones de equilibrio de	Túneles y otras aplicaciones.
		la rebanada.	Universidad Industrial de
		- Relaciones entre esfuerzos y	Santander. Bucaramanga, 2004.
		tensiones en una	González Flestcher, Álvaro.
		- rebanada. Axil, flector,	Fundamentos de
		cortante y torsor. Núcleo	fotointerpretación. Escuela
		- central	Colombiana de Ingeniería. 2009.

Tema 3. Relaciones de compatibilidad.

- Hipótesis de Navier y Bernoulli. Movimientos y
- deformaciones en una fibra, rebanada y viga.

Fórmulas de Bresse. Aplicación a las vigas

rectas con plano de simetría.

Teoremas de

Mohr. Vigas conjugadas.

Tema 4. Ecuaciones constitutivas.

- Ensayos de una material bajo axil y cortante.
- Módulo de elasticidad.
 Coeficiente de Poisson.
- Diagramas tensióndeformación.
- Ecuaciones constitutivas de la rebanada. Secciones no homogéneas. Temperatura

Tema 5. Estudio de los distintos elementos.

- La barra sometida a esfuerzo axil. Esfuerzos y movimientos en sistemas isostáticos.
- Barras hiperestáticas.
 Métodos de las fuerzas o de la flexibilidad y de los movimientos o de la rigidez.
- Acciones térmicas. Barras en medio elástico.

Tema 6. Estudio de los distintos elementos.

- La viga a flexión. Esfuerzos

Jiménez Pérez, Édgar. Doblevía – Ing. Civil. Bolg en Internet. Disponible en http://doblevia.wordpress.com McCormac, Jack. Topografía. Limusa Wiley. México, 2005.

Paul R. Wolf y Russell C. Brinker. Topografía, 9^a ed. Alfaomega. 2008.

Torres Nieto Álvaro y Villate Bonilla Eduardo. Topografía, 4ª ed. Escuela Colombiana de Ingeniería, Pearson Educación de Colombia. 2008.

		y movimientos en sistemas isostáticos. Vigas hiperestáticas. - Métodos de las fuerzas y de los movimientos. - Acciones térmicas. Vigas continuas. Vigas de sección variable. Ecuación de la elástica. Vigas en medio elástico Tema 7. Teoremas energéticos. Tema 8. Pórticos. - Clasificación. Pórticos isostáticos e hiperestáticos. Pórticos de nudos fijos y desplazables. Simetría y antisimetría. Marcos Tema 9. Líneas de influencia. - Aplicación de los teoremas de reciprocidad. - Planteamiento dual. Liberalización estructural. Tema 10. Arcos - Arcos. Antifunicular de cargas. Estructuras de arcos y vigas. Anillos. Tema 11. Problemas no lineales. La viga columna Pandon
		- La viga columna. Pandeo elástico.
UNIDAD 2. PLASTICIDAD	 Familiarizar al estudiante con el uso y aplicación del comportamiento real de los materiales 	Tema 12. Introducción. - Hipótesis básicas. Comportamiento real de los materiales. Material elástoplástico. Material plástico ideal. Carga y descarga

<u> </u>	TD 42 C
	Tema 13. Comportamiento de la
	rebanada sometida a flexión pura.
	Tema 14. Comportamiento de la
	rebanada sometida a flexión
	simple.
	Tema 15. Cálculo plástico de vigas
	- Factor de carga. Coeficiente
	de seguridad a la rotura.
	Vigas isostáticas e
	hiperestáticas.
	- Estudio de los diferentes
	tipos de vigas.
	- Ménsula. Viga biapoyada.
	Aplicación del diagrama
	momento-curvatura. Zonas
	parcialmente plastificadas.
	Viga empotrada apoyada.
	Viga biempotrada. Vigas
	continuas.
	Tema 16. Cálculo de flechas y
	giros en vigas hiperestáticas
	- Método exacto.
	Redistribución de momentos.
	- Métodos aproximados.
	Formación sucesiva de
	rótulas. Determinación de
	flechas y giros al producirse
	la última rótula. Carga y
	descarga
	Tema 15. Plastificación de
	pórticos simples
	- Mecanismos completos,
	incompletos y
	supercompletos.
	Condiciones de agotamiento
	de una estructura.

		Martaratica Martat
		- Método estático. Método de
		los trabajos virtuales.
UNIDAD 3	3 Familiarizar el alumno con los	Tema 16. Conceptos
ELASTICIDAD.	materiales de tensión normal y	fundamentales
	flexibilidad.	- Sólido elástico. Tensión de
		Cauchy.
		- Ecuaciones de equilibrio
		interno. Condiciones
		estáticas en el contorno.
		Tensor de tensiones.
		- Tensiones principales.
		Tensiones normales y
		tangenciales.
		Tema 17. Movimientos y
		deformaciones.
		- Relaciones cinemáticas.
		- Deformación normal y
		tangencial. Tensor de
		deformaciones.
		Tema 18. Ecuaciones constitutivas
		de un material.
		Tema 19. Planteamiento local del
		problema elástico.
		- Formulación en movimientos
		y fuerzas.
		- Ecuaciones de Lamé.
		Función de tensión.
		- Ecuaciones de
		compatibilidad en tensiones.
		Tema 20. Planteamiento global del
		problema elástico en movimientos.
		Tema 21. Estudio de la torsión.
		Tema 22. Elasticidad plana.
		Tema 23. Elasticidad plana en
		coordenadas polares.
		coor activates point est

ACTIVIDADES DE APRENDIZAJE:-

- Exposición por parte del profesor
- Discusiones facilitadas por el instructor
- Trabajo individual o grupal por parte de los estudiantes.
- Análisis de casos
- Construcción de mapas conceptuales que reafirmen la importancia de los elementos teóricos básicos.
- Exposición de los temas a través de ejercicios teóricos y de aplicación seleccionados como base de aprendizaje
- Solución dirigida de ejercicios teóricos y de aplicación.
- Solución de ejercicios en forma individual y en equipo
- Solución a ejercicios asignados de tarea.
- Investigación de conceptos básicos y aplicaciones.
- Resolución de ejercicios teóricos y de aplicación a distintas áreas, en forma individual y grupal
- Trabajo realizado en el aula.
- Examen.

RECURSOS DIDÁCTICOS: Pizarrón, infocus, laptop.

EVALUACIÓN: Tres evaluaciones (Parcial al finalizar el mes) que equivalen al 25%, cada una, de la evaluaciones; Exámenes Rápidos que equivalen

al 10% de la evaluación final y los Trabajos Individual y en Equipo que equivalen al 15% de la evaluación final cada uno.